JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 10 15 MAY 1998

Critical-state model for intermodulation distortion in a superconducting
microwave resonator
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A model is presented for the treatment of intermodulation distortion in a superconducting
transmission line caused by vortex penetration and hysteresis. An analytical framework is
developed, and numerical results are presented for center conductors of both circular and rectangular
thin-film cross section. ©1998 American Institute of Physids$0021-897¢8)03510-5

I. INTRODUCTION field is larger tharH ;. We will also neglect any effects due

. . . , to surface barrier.
There is presently considerable interest in the use of

high-temperature superconduct@kTSS in passive micro-
wave devices such as filters for wireless communicatién. || THE MODEL
Much of this interest stems from the fact that recent proto-
types of HTS filters have shown performance superior to  We consider a one-dimensional coaxial-type transmis-
conventional filters by at least an order of magnittd&his  sion line. The outer conductor is a superconducting cylindri-
improvement is due to the lower conductor loss of HTSs asal shell of radiusR. The inner conductor is either a super-
compared with conventional conductors. Lower conductoiconducting wire of circular cross section with radiysor a
loss leads to a larger unload€ and, therefore, to a nar- superconducting thin-film strip of width\® and thicknessl
rower bandwidth. (see Fig. 1L The input signal contains two closely spaced
One drawback to the use of HTSs is their nonlinearity.frequenciesw; and w, centered around the resonant fre-
This nonlinearity manifests itself in a dependence of the surquencyw,. The resulting transport current in the center con-
face impedance on the input power or transport currenductorl is given by
amplitude>® One consequence of the power dependence is |
that the low-power surface impedance is no longer a suffi- 1(t)= % [cog w;t)+cog w,t)], 1)
cient figure of merit for the material. Instead, the surface
impedance must be determinz% at the specific power athich can also be written as
which the device will be operatedNonlinearities also lead
to two-frequency intermodulatioiM). The occurrence of I7(t) =0 COd wt)COg Aw), @)
IM in filters can cause various problems such as the generavherew;= wy+Aw andw,= wy— Aw. We assume that for
tion of spurious targets in radar receiveérd good under- the circular geometry<r, and that for the strip geometry
standing of these nonlinear effects must be achieved befor@ther A\ <d<W or d<A<A<W, where\ is the London
high-quality filters can be constructed from HTSs. While penetration depth and\ =2\?/d is the two-dimensional
these effects are present even at lower input powers, thescreening lengtf® For the strip geometry we will also as-
become much more pronounced as the power increases. Esume thaR is large enough that the center conductor can be
perimental evidence suggests that the nonlinearity is assodreated as if it were isolated. This turns out not to be very
ated with the onset of vortex penetration and hystersis. restrictive’'~*® These assumptions allow us to use the well-
Previous modeling of the data has assumed a coupled-grakmown results for infinitely long, isolated circular wires and
model at low input powef.’ This model was successful in strips4~16
fitting the behavior of both the resistive and reactive re-  When Iy, becomes large enough, vortices will start to
sponses of the surface impedance. At higher power a modpenetrate into the center conductor from its surface. In our
fied Bean model was employédThis model was able to calculations we assume thit,;=0 and that there are no
guantitatively explain the power dependence of the surfaceurface barriers, so vortex penetration occurs fot git 0.
resistance. Thus far, models to explain IM in either the low-For the circular geometry the vortices will be closed circular
power or high-power regions have been lacking. rings, while for the strip geometry they will be either Abri-
The purpose of this article is to provide a model for kosov \<d) or Pearl @<<\) vortices. For simplicity we
describing IM due to quasistatic vortex penetration and hyswill neglect any vortex penetration in the outer conductor.
teresis. We will employ a field-independent critical-stateWe assume that we can treat the vortex motion quasistati-
model with the assumption that.; =0 (Bean model® This  cally. This will be done using a critical-state model with
should be an excellent approximation when the average selfield-independeng,, .46
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FIG. 2. Cross section of the center conductor for the circular geometry. The
radius of the moving flux front ia. The flux densityB,, changes only in the
FIG. 1. The two geometries considered in this paper. The outer conductor igegion p>a. The regionp<a, is completely screened witB,=0 and

a cylindrical shell of radiuR. The center conductor is either a circular wire J,=0

of radiusr or a thin-film strip of width 2V (W<R) and thicknessl. They
axis points into the page.

the n=N+3 andn=N—-3 terms of the series. The time-

The voltage drop per unit length is given by Faraday,saveraged dissipated power per unit length is given by

law 1 (T
d Pdiss:? JO I+(t)V(t)dt. (7
V(t)= g ®(1), 3
Inserting Eq.(1) and Eq.(3) into Eq. (4) yields

where ®(t) is the magnetic flux per unit length enclosed
between the axis of the transmission line and the outer con- |$0
ductor. Therefore, to calculaté(t) we must first determine diss~ 4~ (Ru+1+Ry-1). ®
the magnetic field generated by the transport current.

The current-density and flux-density profiles may be de-Equation(8) implies that the resistance per unit length of the
termined using the critical-state model. The critical state infransmission line is equal to the averageRpf, ; andRy -1 .
the presence of two frequencies is considerably more comlfhe reactance per unit length is equal to the averagé,ef
plicated than for a single frequency, but the theoreticaPnNdXy-1.
analysis is considerably simplified if we make the assump- ~We first consider the circular geometry. In a circular
tion wy/Aw=N=integer. When this is trud(t) is peri-  Wire, flux will penetrate in from the surface as circular fronts.
odic with periodT=27/Aw; thereforeV(t) is also periodic ~ There will only be one flux front moving at a time. La(t)
with the same period. We may, therefore, exprééy as a  be the radius of this fronfsee Fig. 2 The voltage drop per

Fourier series unit lengthV(t) is given by
S [ Vt—d fRdB t—daJRd &B
V()=l1 3, [Ry cogndwt) =X, sinndwt)], (4 (O=g;| |, dBalp0) | =57 | | do 55 Bulp.a)],
where the coefficient®, andX,, are given by 9
Aw (T whereB ,(p,t) is the magnetic flux density at radipsmea-
R,= f dtV(t)cognAwt), (5)  sured from the center of the wire. The expression for the
7l1o Jo magnitude of the partial derivative & is given by
and J B.(p.a) 0, p<a, 10
—Aw (T sa oo P T 2u0d.alp, a<
Xo=—— f dtv(t)sinnAwt), () 7a Hoseip, =P,
T0 JO

and the sign is opposite to the sign of the current density in
respectively. Sincew;=(N+1)Aw and w,=(N—-1)Aw, the regiona<p<r. The magnitude o¥(t) is given by
the fundamental response will be given by theN+1 and
n=N-—1 terms in the series. The third-order intermodulation

da
response, at frequenciem2— w, and 2w,— w;, is given by V(]==2p0dca g In

dt

R
g) , (11
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and the sign o¥/(t) is the same as the sign of the current in collapses quasistatically toward the center untibr/ wg, at

the regiona<p<r. Therefore, oncea(t) is determined,
V(t) can be calculated with Edq11).
To determinea(t) we must examine the equation
d I+(t)=0 12
gt (v =0. (12

The roots of Eq(12) are the values df at which the previ-

which time it stops at radiug;>a,. This new front leaves a
current density—J. behind it as it penetrates in. At tinte
=ml/wg another front begins to penetrate in and leaves a
current density+J; behind it. This front stops at timé
=27/ wy and radiusa,>a; . This process continues until
=(N/2—1)7/wg, at which time there is a remnant structure
consisting of annular regions with the current density alter-

ous flux front stops moving and the new flux front starts tonating betweent J. and—J.. The outermost annular region

penetrate in from the surface. Using Ef) for I+(t) in Eq.

contains a current density—J,. At time t=(N/2

(12) yields a transcendental equation which can only be—1)7/wo, anew front begins to penetrate into this remnant
solved numerically. However, whed>1, the roots deviate Structure, leaving a current densityJ. behind, and it stops

only very slightly from integer multiples of/wq. Using this
approximation for the roots of Eq12) allows us to derive

at time t=(N/2+1)7w/wy. At time t=(N/2+1)7w/wqg, a
front begins to penetrate in, leaving a current density;,

the expressions faa(t). In order to derive the expressions and stops at timé=(N/2+2)7/w,. This process continues

we divide up the period =2#/A w into four equal intervals.
Each of these intervals is then divided ini82 equal sub-

until t=Nm/wg, at which time the current density is the
same as as in Eq13) except with a negative sign. This

intervals. Each subinterval corresponds to a time periogorresponds to tim¢=T/2. The same process occurs be-
mlwg. At t=0 the center conductor has current-density andweent=T/2 andt=T, except that the positive and negative

flux-density profiles given by

_ 0, p<ay,
Jy(p)= Jo ag<p<r,

(13

and

01 p<a01

pode(p®—ad)
2p '

podc(r?—aj)
2p '

whereapg=\1—F and F=I1q/l, with |,=7r2J.. A new
front begins to penetrate in from the surfacetat0 and

a0<p<r,

By(p)= (14)

r<p<R,

\/ F
1__
2
\/ F
1__
2

( mar
sinl —
N

(m+1)m

a(t)/r=

sin + (=)™ (t)/ 119

+(=1)™M (1)1 TO], (—1)™ (1)1 rp<sin

current densities are switched. The expressiond) is
derived by writing the expression fo#(t) in terms ofa(t)

in each subinterval. The resulting expression for the first in-
terval 0<t<T/4 is given by

/_\/1 F mar
a(t)/r= -5 co N

wherem is the index that labels the subintervatsy= wt
<(m+1)m, m=0,1,..N/2— 1. The expression for(t) is
given by either Eq(1) or Eq. (2). For T/4<t<T/2, the ex-
pressions are

+(=1)™ () 170],
(15

I'T'MT)
W )
(16)

otherwise,

(N/2+ m) < wot<(N/2+m+1)7, m=0,1,...N/2— 1. The reason that there are two expressionsfd=t<<T/2 is that the
flux fronts are penetrating through a remnant state. THat<<3T/4,

a(t)/r=1—(F/2)[cogmm/N)+(—1)™+(t)/11o], (17)
(N+m)mr<wet<(N+m+1)m7, m=0,1,..N/2— 1. For 3T/4<t<T,
\/ F H ma m+1 m+1 H mar
1—5 sin W +(—-1) I+(t)/ 1], (=1) [1(t)/1p<sin W ,
a(t)/r= (18
F (m+1)m
\/1— > sinl +(—1)™ L (t)/ 11|, otherwise,

Downloaded 10 Apr 2001 to 147.155.64.74. Redistribution subject to AIP copyright, see http://ojps.aip.org/japo/japcr.jsp



5310 J. Appl. Phys., Vol. 83, No. 10, 15 May 1998 McDonald, Clem, and Oates

(BN2+ M) < wot<(3N/2+m+1)w, m=0,1,...N/2—1. z
Using these expressions to calculdi@ dt, we obtain

ol To . .
V(t)=— Si 1)+ Si t
()=="=3 = (1 SiN(w31) + w; Sin(w5t)) 1 | S
d T| ! [ ] —
R a(t
X|In ?>—In (T) (19 ! 220 !
) o . . . . — 2a |
The first term within the brackets is a linear inductive re-
2w
|

sponse and is proportional to the geometric reactance per |
unit lengthXg,

R FIG. 3. Cross section of the center conductor for the strip geometry. The
_ Mo%o - flux density B, changes only in the outer regioas<|x|<W. The region
= In (20)
0 24 r |x|<ag is completely screened with,=0.

The second term arises from the hysteretic behavior and

leads to nonlinearities. where the scaling fiel®; is given by?®
A similar analysis can be applied to the strip geometry.

Let the position of the moving front be given aft) (see

Fig. 3. The voltage drop per unit length is given by sz'uo‘]cd, (23
d R "
V(t)=— —f dxB,(X,t)
dt 0 and the sign is the same as the sign of the current density in
da R g the regiona<x<W. The magnitude o¥(t) is
il fo dxa B,(x,a) |, (21
da 1 R+ R?-a?
whereB, is the normal component of the magnetic field in  |V(t)|=—2B;a o e In . (29
thex—y plane a distancg from the center of the strip. The VW-a a
magnitude of the partial derivative &, is given by
0, x<a, and the sign is the same as the sign of the current density in
d the regiona<<x<<W.
‘% Bo(x,a)|= 2a ~a The period is divided and subdivided in the same way as

B : . . )
" JWP=a?)(x’—a?) for the circular geometry. The expression &ft) during the

(22)  first interval 0<t<T/4 is given by

a(t)/W= 11— (F2/4)[codmm/N)+(—1)™ L (t)/1 1012, (25)
Mr<wot<(Mm+1)mw, m=0,1,...N/2— 1. ForT/4<t<T/2,

F2 mar
1——|sinl —
4 N

2 mmr
+(—1)m|T(t)/|To} , (—1)mIT(t)/IT0<sin( W)

a(t)/wW= (26)
F? (m+1)m 2
1—? sin +(=D)M(t)/11o| , otherwise,
(N/2+m)m<wt<(N/2+m+1)w, m=0,1,...N/2—1. ForT/2<t<3T/4,
a(t)/W= 11— (F2/4)[cod mm/N)+(—1)™ +(t)/110]2, (27)

(N/2+m)m<wet<(N+m+1)7, m=0,1,..N/2—1. For 3T/4<t<T,

F? mar mar
1-—|sinf — —
4 N N

a(t)/w= (28
F? (m+1)m 2
1—7 sinl ——— |+ (=)™ 4(t)/119| , otherwise,

2

(=)™ (o], (=)™ (0 17o<sin
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FIG. 4. P, vs P;, for a resonator, with either circuléop) or strip (bottom)
center conductor, at frequencies and 2w, —w,. The parameter values
used wereZ,=50Q), fo=wo/2m=1.6 GHz,|=3cm, W or a=75um, d
=0.3um, andJ,=10° A/lcm?. It was assumed that the dielectric constant
characterizing the region between the conductors=40.

(BN2+ M) m<wot<(3N/2+m+1)7w, m=0,1,..N/2—1.
Using these expressions to calculdi&' dt, we obtain

_ #olTo
4ar

R+ VR?—a?
a

V(t): [(,()1 Sin(wlt)-i—wz S|r(w2t)]

X In . (29

If we expand around largR, the result is

ol o
4

2RI
Wn

V(t)=—

[wq SIN(w4t) + wy SIN(w5t) ]

a(t)

X
w

In +0 . (30

W2
"
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resonator lengthy’ to make it dimensionally correct. In a
typical experiment a current given by EQ.) is established

in the center conductor. The input power is the same for both
frequencie$. The output voltage signal is analyzed to deter-
mine the distribution of power among the various frequen-
cies inside the resonator. The amount of output power at a
given frequency can then be plotted versus the input power
to determine the degree of nonlinearity present. The relation
between the time-averaged available incident pogrand

the peak currenk;, was derived previously,

8r,(1-r,)QPinc

lto=
whereQ is the unloaded quality factor ar#j, is the charac-
teristic impedance of the line. The relation between the time-
averaged output poweP,,; and P;, is given by Pg,
=r5Pinc, wherer, is the voltage insertion ratio. In terms of
S parameters;;, =|S,4|. This is a power-dependent quantity,
which is nearly proportional t® at intermediate powers.
The insertion losqIL) is given by IL=—20log;r, dB.
The output power is distributed among the various frequen-
cies present in the voltage signal. The power spectrum at
frequencynAw is proportional toR3+X2. The amount of
output power at frequenayA w [ Py {NA w)] is given by the
product of the time-averaged output power and the fraction
of power stored at that frequency,

R2+ X2
LR X))

Pou(NAw) =PgyX . (33

©

n'=

h

Figure 4 shows plots dP,,{( w4) andPy (2w — w3) VS Pjyc

for both the circular and strip geometries. The parameters
chosen wer&,=50Q), fo=wy/27=1.6 GHz,/=3 cm, W
ora=75um, d=0.3um, andJ.=10° A/cm?. At low inci-

dent powers, the slope &f,,{ w1) vs P, is equal to one for
both geometries and the slope B (2w, — w,) is equal to
two for the circular geometry and three for the strip geom-
etry. At intermediate incident powers, the slopeRyf( w1)
becomes equal to 1/2 for the circular geometry and 1/3 for
the strip geometry, while the slope &, (2w;— w,) is
equal to one for both geometries. The change in slope be-
tween the low and intermediate power regions is observed
experimentally*®!° The third-order interceptTOl) is equal

to 29.0 dBm for the circular geometry and 18.0 dBm for the
strip geometry.

The first term is proportional to the geometric reactance per

unit length
MoWqo 2R
Xo= o= In<W>. (31

Ill. CONCLUSION

We have presented a critical-state model for intermodu-

The second term arises from the hyteretic behavior and leadation distortion in a superconducting coaxial-type transmis-
to nonlinearities. The third term leads to small correctionssion line. This model can be applied to a superconducting

and will be neglected.

microwave resonator if end effects are neglected. Center

Resonators have a finite length. Therefore, if we want taconductors of both circular and thin-film cross section were
apply our results to a resonator we must assume that thieeated. The results presented should be of relevance to ex-
fringing effects due to the ends of the resonator can be neperiments dealing with the design and testing of supercon-

glected, and we must multiply our expression ¥t) by the

ducting microwave devices.
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